The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology
نویسندگان
چکیده
Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.
منابع مشابه
Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation.
In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supply...
متن کاملProtective effect and mechanism of glutaredoxin 1 on coronary arteries endothelial cells damage induced by high glucose.
In recent years, diabetes and its associated complications have become a major public health concern. The cardiovascular risk increases significantly in diabetes patients. It is a complex disease characterized by multiple metabolic derangements and is known to impair cardiac function by disrupting the balance between pro-oxidants and antioxidants at the cellular level. The subsequent generation...
متن کاملInvited Review CALL FOR PAPERS Oxygen Sensing: Life and Death of a Cell Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system
Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292: H1227–H1236, 2007. First published December 15, 2006; doi:10.1152/ajpheart.01162.2006.—Reactive oxygen species (ROS) and the cellular thiol redox state are crucial mediators of multiple cell processes li...
متن کاملA novel role for human sulfiredoxin in the reversal of glutathionylation.
Modification of protein cysteine residues by disulfide formation with glutathione (glutathionylation) is a reversible posttranslational modification of critical importance in controlling cell signaling events following oxidative and/or nitrosative stress. Here, we show that human sulfiredoxin, a small redox protein conserved in eukaryotes, can act as a novel regulator of the redox-activated thi...
متن کاملThiol redox control via thioredoxin and glutaredoxin systems.
The Trx (thioredoxin) and Grx (glutaredoxin) systems control cellular redox potential, keeping a reducing thiol-rich intracellular state, which on generation of reactive oxygen species signals through thiol redox control mechanisms. Here, we give a brief overview of the human Trx and Grx systems. The main part focuses on our current knowledge about mitochondrial Grx2, which facilitates mitochon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2015